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Abstract 

 Being able to predict the sizes of a crab's carapace is helpful for both the fishers and 

the crabs themselves. Considering the severe de-escalation in the Dungeness crab population, 

the disappearance of them by the northern Californian coast would prove to be a major 

economic hit. Fishermen would lose their jobs and any that still would be working would not 

have much to catch, not to mention the obvious detriments that the ocean ecosystem would 

suffer from the absence of the Dungeness crabs. To find the optimal carapace size for the 

crabs to be caught at will solve this problem. We will be successful in doing this by using 

various statistical, analytical, and computational methods with an end goal of finding a linear 

model to predict the pre-molt sizes from the measured post-molt size. We will also be 

proving why the linear model works and is accurate. How our model differs from the actual 

data will be examined to confirm our predications and confirmations of the assumed accurate 

regression lines. The results from this will help the fishing economy on the California coast, 

restore the Dungeness crab population and overall, better the aquatic ecosystem in the Pacific 

Ocean.         

 

 

 

 

 

 

 



Introduction & Background 

Unregulated or overfishing can lead to a major disruption in a sea creatures’ 

population and can disrupt their appropriate environment along with their living conditions. 

In specific, Dungeness crabs are commercially fished along the Pacific coast of North 

America mainly between December and June. The vast majority of what is caught by the 

fishermen are male crabs with the intent to keep the female crabs to maintain the 

sustainability of the overall crab population. The overfishing of these crabs has led to an 

imbalance in the sex ratio and possibly contributed to the decline in crab population near the 

Californian central coast. Due to this imbalance, there has been a large surge in the parasitic 

ribbon worm population. This increase in the parasitic population has led to worms 

destroying anywhere from 50-90% of the Dungeness crab eggs every year.  

To try to reverse this effect, size restriction has been placed on the male and female 

crabs for them to have more opportunities to mate before being caught. A carapace is 

essential the crabs shell which is measured in millimeters along it’s center from side-to-side. 

Male crabs tend to have growth marks on their shells where female crabs do not, so it is more 

difficult to determine their age and if they can be caught or not. The marks appear when a 

crab has molted or removed its old shell for a new one. When it comes to female crabs they 

do not molt very often and sometimes not even yearly. So there needs to be some way in 

specifying their age, last time they molted and their growth pattern. We can do this by 

looking at female crabs who have recently molted and viewing their change in carapace size 

to predict growth patterns and extrapolate the data with the intent to develop 

recommendations on size restriction of the female crabs. 

The data for this observation was conducted by David Hankin, Nancy Diamond, 

Michael Mohr, James Ianelli, with help from the California Department of Fish and Game 

and commercial fishers from northern California and southern Oregon. There are two sets of 

data, one including 472 carapace sizes of crabs from laboratory data (This set will sometimes 

be denoted by a 1) and another 472 carapace sizes from crabs collected in a capture-recapture 

manner (This set will sometimes be denoted by a 0). Each data set also included the pre-molt 

and post-molt sizes of the carapace for the lab (1) and the Field/capture-recapture (0). 

 

 



Methods 

To analyze the given data Mathematica was used. From Mathematica I imported the 

data and organized it so the post-molt size was the independent variable, and the pre-molt 

size was the dependent variable. I created about 9 different .csv files to organize all my data 

correctly in the way I wanted. Those files were organized into the following, “Pre-molt All vs 

Post-molt All”,  “Pre-molt Only”, “Post-molt Only”, “Pre-molt (1) Only”, “Post-molt (1) 

Only”, “Pre-molt (0) Only”, “Post-molt (0) Only”, “Pre-molt (0) vs Post-molt (0)”, and “Pre-

molt (1) vs Post-molt (1)”.  The majority of these were made so I could find the Mean, 

Standard Deviation, Skewness, Kurtosis, Minimum, Maximum, Median, Quartile 1 and 

Quartile 3 of very specific groups of crabs to get a better understand of how result vary from 

group to group (Note that the names derive from classification of lab data (1), field data (0) or 

All/Both). After having all the data separated correctly, I then created a scatter plot along 

with a plotted regression line for the “Pre-molt All vs Post-molt All”. Once I had my 

regression line I found and plotted a corresponding scatter plot of residual values along with a 

histogram, smooth histogram, and theoretical normal distribution with the same Mean, 

Standard Deviation, Minimum and Maximum of the residuals. I then plotted a Quantile Plot 

for my residuals, and all sets of data groups. I repeated the same steps and created similar 

graphs for the remaining two data sets “Pre-molt (1) vs Post-molt (1)” and “Pre-molt (0) vs 

Post-molt (0)”. Lastly, I plotted the smooth histograms of the 3 sets of residuals on top of 

each other.  

These statistical measurements helped me understand the distribution and spread of 

all data groups. The quantile plots were created to compare the data sets distribution to the 

theoretical normal distribution. The histograms give a great visual to many of the 

measurement made such as skewness, kurtosis and mean. Plotting the residual smooth 

histograms on top of each other makes it easy to compare the relative difference between 

them. The generated regression line is what will be used to make our prediction, before, 

during and after the extent of our data.  

 

 

 



Results 

Figure 1. Table of Descriptive Statistics for the 6 divided data groups 

We can see in Figure 1. That the kurtosis for all groups is high and the skewness is decently 

negative. This can be interpreted as telling us that our data is not normally distributed. 

 

Figure 2. Residual Descriptive Statistics 



 

Figure 3. Scatter Plot with Regression Line (Left) and Plot of Residuals (Right) for Pre-molt 

All vs Post-molt All 

 

 

 

Figure 4. Histogram with Normal Distribution (Left) and Smooth Histogram of Residuals for 

Pre-molt All vs Post-molt All (Right) 



 

Figure 5. Q-Q Plot of Residuals for Pre-molt All vs Post-molt All 

 

 

 

 

Figure 6. Scatter Plot with Regression Line (Left) and Plot of Residuals (Right) for Pre-molt 

(Lab-1) vs Post-molt (Lab-1) 



 

Figure 7. Histogram with Normal Distribution (Left) and Smooth Histogram of Residuals for 

Pre-molt (Lab-1) vs Post-molt (Lab-1) (Right) 

 

Figure 8. Q-Q Plot of Residuals for Pre-molt (Lab-1) vs Post-molt (Lab-1) 



 

Figure 9. Scatter Plot with Regression Line (Left) and Plot of Residuals (Right) for Pre-molt 

(Field-0) vs Post-molt (Field-0) 

 

 

 

Figure 10. Histogram with Normal Distribution (Left) and Smooth Histogram of Residuals 

for Pre-molt (Field-0) vs Post-molt (Field-0) (Right) 



 

Figure 11. Q-Q Plot of Residual Pre-molt (0-Field) vs Post-molt (0-Field) 

 

 

Figure 12. Q-Q Plot for Post-molt All (Left) and Pre-molt All (Right) 



 

Figure 13. Q-Q Plot for Post-molt Lab-1 (Left) and Pre-molt Lab-1 (Right) 

 

 

Figure 14. Q-Q Plot for Post-molt Field-0 (Left) and Pre-molt Field-0 (Right) 



 

Figure 15. Smooth Histogram of All 3 Group Comparison Residuals 

Figure 16. Pre-molt All vs Residuals 

 

 



Figure 17. Pre-molt (Lab) vs Residuals (Left) and Pre-molt (Field) vs Residuals (Right) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Estimating with Acquired Linear Model 

 

 



Discussion & Conclusion 

One of the biggest things to notice is that in every Q-Q Plot at the beginning and end 

of the plotted data points goes off in a non-liner fashion rather than following the theoretical 

uniform distribution. This tells us that if we want to accurately predict pre-molt sizes either 

before/near the beginning or at the end/beyond our data it is going to become less accurate 

than if we predict values between the end points.  

When looking to identify heteroscedasticity or homoscedasticity we could look at 

Figures 3, 6 and 9 and focus on the variance of the residuals but it is quite difficult to 

examine this from just the residual values themselves. What we can do is look at Figure 16. 

where we have plotted pre-molt (All) vs the residuals. In Figure 16. there are homoscedastic 

properties. The reason for this is because most of the residual lies in-between +/-4 and 

consistently stay there. In Figure 17. when we look at the pre-molt (Lab) and pre-molt (Field) 

data there tends to have more heteroscedastic characteristics. Though in pre-molt (Lab) it is 

quite difficult to exactly determine if it would be considered hetro or homoscedastic than in 

pre-molt (Field) where we can defiantly define that as being heteroscedastic. 

An important aspect of how accurate our regression line is by looking at the kurtosis 

of the residuals. We can see in Figure 2. that the kurtosis values of Residuals (All) and 

Residuals (Lab) are very large, greater than 8. This is a good thing because it means that most 

residual values are small, meaning less error between them and the regression line, which is 

what we are looking for. Though the kurtosis for the Residuals (Field) are not as large as 8, it 

is still above the normal kurtosis value 3, ours here is 3.91. This is still good as the residual is 

peakier so more of the residuals are closer to zero.  

Looking at figure 18. we can see that most of the randomly selected data points are 

predicted accurately. As said before when we try to predict pre-molt sizes at the end points of 

the data set our answers will be more inaccurate which and be seen by the larger differences 

found such as 7.171mm, 2.908mm and 1.532mm.  

The last important measurement we should look at is the RSqaured value for the three 

groups. For both the All group and the Lab group we have a RSquared of ~.98 and for the 

Field group ~.93. These tell us that we have a good relationship between our two variables, 

pre-molt and post-molt.  



From what was discovered about our groups through statistical, visual, and analytical 

methods/measurements it can be concluded that we are able to accurately determine the size 

of the pre-molt carapaces. However, predicating them from the Lab will give us a more 

accurate estimation than from the Field. Linear models for our groups were found and proved 

why they are good fits and how they compare to each other. These models and the process 

that was used to assess and create them can be used to help restore the Dungeness crab 

population and halt overfishing by placing restrictions on the specific sizes at which they can 

be caught at. 
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Appendix

For a data set (x1, y1), ..., (xn, yn) show how to find the values for a, b that minimize
the sum of squares

S(a, b) :=
n∑

i=1

(yi − (axi + b))2

Proof.

∂S(a, b)

∂a
= 2

n∑
i=1

(yi − (axi + b))(−xi)

∂S(a, b)

∂b
= 2

n∑
i=1

(yi − (axi + b))(−1)

Let

∂S(a, b)

∂a
= 0

∂S(a, b)

∂b
= 0

0 = 2
n∑

i=1

(yi − (axi + b))(−1)

=
n∑

i=1

(−2yi + 2axi + 2b)

=
n∑

i=1

(−2yi + 2axi) + 2nb

−2nb =
n∑

i=1

(−2yi + 2axi)

nb =
n∑

i=1

(yi − axi)

b =

∑n
i=1(yi)

n
− a

∑n
i=1(xi)

n



b = y − ax

Next

0 = 2
n∑

i=1

(yi − (axi + b))(−xi)

= 2
n∑

i=1

(−xiyi + ax2
i + bxi)

= −2
n∑

i=1

(xiyi) + 2a
n∑

i=1

(x2
i ) + 2b

n∑
i=1

(xi)

= −2
n∑

i=1

(xiyi) + 2(y − ax)
n∑

i=1

(xi) + 2a
n∑

i=1

(x2
i )

= −2
n∑

i=1

(xiyi) + 2y
n∑

i=1

(xi)− 2ax
n∑

i=1

(xi) + 2a
n∑

i=1

(x2
i )

= −2
n∑

i=1

(xiyi) + 2

∑n
i=1(yi)

∑n
i=1(xi)

n
− 2a

∑n
i=1(xi)

∑n
i=1(xi)

n
+ 2a

n∑
i=1

(x2
i )

= −
n∑

i=1

(xiyi) +

∑n
i=1(yi)

∑n
i=1(xi)

n
− a

∑n
i=1(xi)

∑n
i=1(xi)

n
+ a

n∑
i=1

(x2
i )

= −n
n∑

i=1

(xiyi) +
n∑

i=1

(yi)
n∑

i=1

(xi)− a
n∑

i=1

(xi)
n∑

i=1

(xi) + an
n∑

i=1

(x2
i )

an

n∑
i=1

(x2
i )− a(

n∑
i=1

(xi))
2 = n

n∑
i=1

(xiyi)−
n∑

i=1

(yi)
n∑

i=1

(xi)

a(n
n∑

i=1

(x2
i )− (

n∑
i=1

(xi))
2) = n

n∑
i=1

(xiyi)−
n∑

i=1

(yi)
n∑

i=1

(xi)

a =
n
∑n

i=1(xiyi)−
∑n

i=1(yi)
∑n

i=1(xi)

n
∑n

i=1(x
2
i )− (

∑n
i=1(xi))2



a =

∑n
i=1(xiyi)− 1

n

∑n
i=1(yi)

∑n
i=1(xi)∑n

i=1(x
2
i )− 1

n
(
∑n

i=1(xi))2


