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Abstract 

 In the scientific study of genes, genetics, DNA replication is an important aspect to the 

growth, development, and renewal of cells. It is important to understand where the DNA 

replication occurs or rather how the DNA replication is distributed along a defined length of 

DNA. We will be discussing the locations of what are known as palindromes, how they are 

connected to DNA, how they are distributed along DNA, and their possible involvement in the 

replication of DNA. To do this, probabilistic measurements and statistical tests will be 

implemented to investigate the randomness of these palindrome locations. Are the palindromes 

distributed along DNA uniformly, follow a Poisson distribution or some other form of a 

probabilistic model. It will be discovered that the location distribution can have a differing 

conclusion based on the perspective. Our analysis and examination lead us to consider more 

likely than not that the Palindromes may be distributed uniformly if we were removing the 

outliers found in our data. The reason why we would want to remove those outliers is because we 

may believe those are the locations of replication (non-random). However, anther conclusion is 

that if we follow our implemented statistical test, the 𝜒2 test, we will believe that the 

palindromes follow a Poisson distribution.  
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Introduction & Background 

DNA is a self-replicating material that exists in most living organisms and is known to be 

the carrier of genetic information that effects the development, functionality, growth, and 

reproduction of cells. In a more descriptive case, DNA is a long-coded message made of four 

letters: A, C, G and T. Since this representation of DNA contains only four letters, the possibility 

of seeing sequences of patterns is very high. It is hypothesized that these patterns may be the site 

of origin for DNA replication. In genetics or the study of DNA, A is considered to be 

complementary to T, and G is complementary to C. One of the type of patterns that is common in 

DNA is palindromes or more specifically complementary palindromes. A palindrome is a word, 

sentence or sequence of letters that is the same backwards that it is forwards.  Some examples of 

these are “madam”, “race car”, “taco cat” or “ABCDEDCBA”. When it comes to complementary 

palindromes, let’s look an example of one. Consider the DNA sequence “GGGCATGCCC”. 

When we first look at this, we may not see any palindromes in sight because “GGGCATGCCC” 

is not the same as “CCCGTACGGG”. When we consider complimentary palindromes such that 

A complement is T and G complement is C we get “GGGCATGCCC” (forwards) and 

“CCCGTACGGG” (backwards) 
𝑦𝑖𝑒𝑙𝑑𝑠
→     “GGGCATGCCC”. This means that “GGGCATGCCC” 

is a complementary palindrome. The data given for the report is a set of locations for which 

DNA sequences contain palindromes of length 10 or more. For example, in the data set the first 

point is 177. This means that in position/location 177 there is a palindrome of length 10 or more. 

We will be considering a data set containing 294 palindromes of length 10 or more. Our next 

point in the data set is 1321 and our final point will be 227,316 (All locations between 0 - 

228,000). The goal of this research is to determine or address the issue on how these locations 

are distributed, are they uniformly random, follow a poison distribution, or maybe follow some 

other type of distribution. When we consider something to be uniformly random, we will take 

this as saying that if we split the totally length of the DNA in 𝑛 equal segments then each of 

those segments will contain the same number of palindromes. If we split the DNA into 50 equal 

segments, we expect the same number of palindromes in the first segment, the second and so on. 

When it comes to how we define a Poisson distribution or more correctly a homogeneous 

Poisson process there are three main assumptions to be accepted or that must be satisfied. The 

first one being that the λ (the expect number of events in the interval) does not change with 
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location, each segment will have the same λ. The next two assumptions are that the location of 

the points are independent of each other and no two points overlap or are in the same exact place. 

The Poisson distribution, or probability at a value 𝑘 is given by, 

𝑃(𝐾 = 𝑘) =  
λ𝑘𝑒−λ  

𝑘!
, 𝑓𝑜𝑟 𝑘 = 0, 1, 2, … 

 

Methods 

 We will start by importing the data of complementary palindrome locations into 

Mathematica. For simplicity we will call complementary palindromes just palindromes. Once we 

have our locations, we can start with a probability density function histogram. This will show us 

the uniformity of our data. In our analysis we will be splitting the total length of DNA into 4 

different cases. In the first case we will split the total DNA into 50 equal lengthen segments of 

4560, because 4560 ∗ 50 = 228000. We should also reinforce the idea that we are looking at 

the first 294 palindromes of the data which is contained in the range [0, 280,000]. The next 3 

case we split the DNA into 57, 50 and 65 equal length segments. Each segment will have a 

length of 4000, 3800, and 3508, respectively. Other than the PDF histogram we will be creating 

histograms of different bin sizes. This bin sizes will correspond with the number of equal 

lengthened segments that we split the data up as. As an example, for the 65-segment case we will 

create a histogram with 65 bins. This will allow us to see the distribution of palindromes for 

more specific cases of data splitting and for more specific regions in the data. This is also done to 

possibly identify a sight of DNA replication, a secondary goal of this report. We will be finding 

the descriptive statistics of the location to better understand how our data behaves. Once this is 

all completed, we will apply a computational test to see total number of palindromes in each 

segment that we have created. We are going to be grouping the number of palindromes for each 

interval/segment observed. We will see how many segments contain 0-2, 3, 4,…,8,9+ 

palindromes. For example, in the 57-segment case there were 7 intervals that contains 0-2 

palindromes and 8 intervals that contained 6 palindromes. Similarly, we will need an expected 

number of intervals. This is where we will start gathering data on uniform randomness and 

Poisson distributions. The case of uniform randomly distributed positions is very simply to 

calculate. If we have a segment of length 57, we expect the number of palindromes in each 
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segment to be 5.16 or ≅
294

57
. This will be our expected number of intervals containing 𝑥 number 

of palindromes. Next, we need to see how to find the expected values for our Poisson 

distribution. We will first define our λ as 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑙𝑖𝑛𝑑𝑟𝑜𝑚𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠
 or just 

294

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠
. Then 

we will test 𝑘 = 0, 1, 2 into, 

𝑃(𝐾 = 𝑘) =  
λ𝑘𝑒−λ  

𝑘!
 

and sum them together. The reason for summing them together is that sometimes there are very 

few to 0 palindromes in the first couple intervals so it will be best if we consider the values of 𝑘 

all as one together. We will get  

∑ 
λ𝑘𝑒−λ  

𝑘!

2

𝑘=0

= 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 0, 1 𝑎𝑛𝑑 2 𝑝𝑎𝑙𝑖𝑛𝑑𝑟𝑜𝑛𝑒𝑠 

For the number of intervals containing 3, 4,…,8 palindromes we will evaluate the Poisson 

probability individually say,  

𝑃(𝐾 = 8) =  
λ8𝑒−λ  

8!
= 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 8 𝑝𝑎𝑙𝑖𝑛𝑑𝑟𝑜𝑛𝑒𝑠 

Lasty for intervals containing 9+ palindromes we will evaluate, the following, 

∑ 
λ𝑘𝑒−λ  

𝑘!

∞

𝑘=9

= 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 9 + 𝑝𝑎𝑙𝑖𝑛𝑑𝑟𝑜𝑛𝑒𝑠 

After all of this is done we will now have all of our observed and expect numbers for uniformly 

random and Poisson distributions. The last statistical test we need to examine is the goodness-of-

fit for both distributions. We will be using the Chi-square test, this is denoted by, 

𝜒2 =∑
(𝑂𝑖 − 𝐸𝑖)

2

𝐸𝑖
, 𝑂𝑖 = 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑟𝑒𝑠𝑢𝑙𝑡, 𝐸𝑖 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑠𝑢𝑙𝑡 

𝑛

𝑖=1

 

A small 𝜒2 will tell us that the observed and expect results are similar or close together and a 

large 𝜒2 tells us that there is a large deviation from the observed and expected result. We want to 

see which distribution, uniformly random or Poisson has a smaller 𝜒2. The final statistical 
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measurement that will be made is that of the p-value. We can obtain the p-value by integrating 

the 𝜒2 distribution with 6 degrees of freedom. For the uniformity cases we will be using 

(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 − 2) degrees of freedom, similar to what we had done for the Poisson 

distribution. The 𝜒2 distribution is given by the following, 

𝑓(𝑥) =

{
 
 

 
 𝑥

𝑘
2
−1𝑒

−𝑥
2

2
𝑘
2Γ(
𝑘
2
)
, 𝑥 ≥ 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑘 = 𝐷𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 

Where, 

Γ(z) = ∫ 𝑥𝑧−1𝑒−𝑥𝑑𝑥
∞

0

 

Sometimes denoted as, 

Γ(n) = (𝑛 − 1)! 

This means that, 

∫ 𝑓(𝑥)𝑑𝑥 = 𝑝 − 𝑣𝑎𝑙𝑢𝑒
𝜒2

0
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Results 

 

    

Figure 1. Descriptive Statistics for the locations of palindromes 

 

Mean 116,200

Standard Deviation 64,288

Skewness -0.0235795

Kurtosis 1.86522

Minimum 117

Maximum 227,316

Median 117,826

Q1 63,549

Q3 170,988

Location of Palindromes
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Figure 2. Histogram of Palindrome Locations 

 

 

Figure 3. Histogram of Palindrome Locations Using 50 Bins 



Koohy 8 

 

  

 

 

 

 

 

 

 

 

 

Figure 4. Histogram of Palindrome Locations Using 57 Bins 

 

 

 

Figure 5. Histogram of Palindrome Locations Using 60 Bins 
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Figure 6. Histogram of Palindrome Locations Using 65 Bins 

  

Due to the large number of observed and expected values for uniformity the entire data 

set can be found in the reference section of this report.  

 

 

 

 

 

 

 

Figure 7. Poisson Distribution of Observed and Expected Palindromes for 50 Intervals 

Palindrome

Count Observed Expected

0-2 3 3.37711

3 5 4.73477

4 6 6.96012

5 8 8.1851

6 10 8.0214

7 10 6.73797

8 2 4.95241

9+ 6 7.03113

Total 50 50

Number of Intervals
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Figure 8. Uniform Distribution of Observed and Expected Palidromes for 50 Intervals 

 

 

 

 

 

 

 

 

Figure 9. Poisson Distribution of Observed and Expected Palindromes for 57 Intervals 

  

  

Figure 10. Uniform Distribution of Observed and Expected Palidromes for 57 Intervals  

 

 

 

Palindrome

Count Observed Expected

0-2 7 6.38218

3 8 7.5006

4 10 9.67182

5 9 9.97725

6 8 8.57693

7 5 6.31984

8 4 4.07464

9+ 6 4.49674

Total 57 57

Number of Intervals

Segment 1 2 … 57 Total:

Observed 7 1 … 6 294

Expected 5.16 5.16 … 5.16 ~294

Segment 1 2 … 50 Total:

Observed 7 1 … 6 294

Expected 5.88 5.88 … 5.88 ~294
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Figure 11. Poisson Distribution of Observed and Expected Palindromes for 60 Intervals 

 

 

Figure 12. Uniform Distribution of Observed and Expected Palindromes for 60 Intervals 

 

 

 

 

 

 

 

 

Figure 13. Poisson Distribution of Observed and Expected Palindromes for 65 Intervals 

 

Palindrome

Count Observed Expected

0-2 10 3.37711

3 6 4.73477

4 14 6.96012

5 8 8.1851

6 8 8.0214

7 8 6.73797

8 3 4.95241

9+ 3 7.03113

Total 60 60

Number of Intervals

Palindrome

Count Observed Expected

0-2 14 11.1149

3 9 10.8822

4 11 12.3053

5 8 11.1315

6 12 8.39146

7 7 5.42217

8 0 3.06561

9+ 4 2.68684

Total 65 65

Number of Intervals

Segment 1 2 … 60 Total:

Observed 7 1 … 6 294

Expected 4.9 4.9 … 4.9 294
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Figure 14. Uniform Distribution of Observed and Expected Palindromes for 65 Intervals 

  

Figure 15. Uniform Distribution, 𝜒2 Statistic and Area (P-Value) Calculations 

 

Figure 16. Poisson Distribution, 𝜒2 Statistic and Area (P-Value) Calculations 

 

Discussion & Conclusions 

 As we can see can in Figure 15 and Figure 16 the Poisson model gives a smaller 𝜒2 

statistic and area (p-value as discussed before) than the Uniform model gives us. At a first-order 

approximation it would seem that the Poisson model is a better fit for our distribution than the 

uniform model. Our goal of this report is determining how these palindromes are distributed, did 

they follow a Poisson model, more uniformly distributed or some other distribution. A secondary 

goal of this report was to indicate an area or point where DNA replication begins. It is best to 

examine the histograms in Figures 3-6 to assess if Poisson is truly the better fit, as what our test 

show. We split the histogram of locations in different bins corresponding to the number of 

intervals used. When we did this an apparent outlier or two becomes revealed. From our 

statistical test we believe that the locations followed a Poisson distribution rather than 

Segment 1 2 … 65 Total:

Observed 7 0 … 6 294

Expected 4.5 4.5 … 4.5 ~294

Intervals 50 57 60 65

Degrees of Freedom 6 6 6 6

Chi-Squared Statistic Poisson 4.1722 1.01826 3.92615 7.81213

Area Poisson 0.346614 0.0150894 0.31333 0.747807

Parameters

Intervals 50 57 60 65

Degrees of Freedom 48 55 58 63

Chi-Squared Statistic Uniform 51.5782 74.3371 84.7755 100.5

Area Uniform 0.664289 0.957766 0.987512 0.998128

Parameters
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uniformity, but these different histograms may tell us something otherwise. It would seem that if 

we were to remove those outliers the histogram would follow a more uniform distribution. This 

doesn’t mean that our tests are wrong, in fact they are right but one of the secondary goals of this 

report was the assess the location of DNA replication. It may be hypothesized that those outliers 

are the locations of DNA replication. Those specific points also seem to be very non-uniform 

which disturbed all statistical tests for uniformity and is why we got the 𝜒2 values that we did. 

From these ideas we may think that all other locations are uniformly randomly, and the specific 

location of replication is not random. This leads us to two possibly conclusions, we will consider 

and assess both of them. 

 Our first possible conclusion is that the palindromes do follow a Poisson distribution and 

it is inconclusive on where DNA replication beings. Our evidence for this relies on the 𝜒2  

statistic and the corresponding p-values. When we compare the 𝜒2 statistic between the Poisson 

and uniform cases, Poisson outperformed in every case. Poisson 𝜒2 statistics are always much 

smaller than that of the uniforms 𝜒2 statistics. This leads to the conclusion that the Poisson 

distribution has a better goodness-of-fit than the uniform case would give us. When using the 𝜒2 

distribution to find the models p-value, Poisson generally has more accepted values, to accept the 

null hypothesis than uniform does. In this case our null hypothesis would be that the location of 

palindromes follows a Poisson distribution. The large p-values for uniform tells us that our 

locations are more likely not uniform.  

 The next possible conclusion is that the palindromes are uniformly distributed, and the 

location of DNA replication can be approximately located. Here we will be looking at Figures 3-

6 much more. We can see in the histograms that there is a very apparent outlier. When we 

examine the rest of the data, excluding the outlier, the majority of the data seems to be relatively 

uniform in a sense. Our hypothesis, discussed before, was that if we were to remove the outlier, 

our statistical tests would lead to a more conclusive answer toward the locations following 

uniformity. An issue that arises here is finding out which locations we want to remove and how 

to assess that those were the correct location we want to remove. From a second-order 

approximation we will say that the locations follow a uniform distribution, and the location of 

DNA replication occurs at the outlying data presented in the histograms of differing sized bins.  
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Observed Data for 50 Equal Non-overlapping Segments 

 

 

 

 

Observed Data for 57 Equal Non-overlapping Segments 

 

 

 

 

Observed Data for 60 Equal Non-overlapping Segments 

 

Observed Data for 65 Equal Non-overlapping Segments 

 


